Tutorial 9 : Selected problems of Assignment 8

Leon Li

6/11/2019

Q1) (HW 8,Q4) Fix de [0,1),
$$x_0 \in [0,1]$$
, consider the iteration
 $x_n := dx_{n-1}(1-x_{n-1})$, for any $n \in \mathbb{N}$. Show that O is the
unique fixed point (i.e. If (x_n) converges to x satisfying $x = dx(1-x)$, then $x = 0$)
Also, show that it is attractive: Sor any $x_0 \in [0,1]$, $\lim_{n \to \infty} x_n = 0$.
Sol) Define $T: [0,1] \rightarrow \mathbb{R}$ by $Tx := dx(1-x)$. Showing $T([0,1]) \in [0,1]$:
 T is smooth with $T'(x) = d(1-2x)$; $T''(x) = -2d \leq 0$.
 \therefore T achieve maximum at $\frac{1}{x}$ with $T(\frac{1}{2}) = \frac{d}{4} \leq 1$. \therefore $Tx < 1$, $\forall x \in [0,1]$
Also, $Tx \ge 0$, $\forall x \in [0,1]$, \therefore $T([0,1]) \subseteq [0,1]$
Showing $T: [0,1] \rightarrow [0,1]$ is a contraction: $t_0 = x \leq x = x = 1$.
 T is a contraction with $T(0)=0$.
Showing O is the unique fixed point: Suppose (x_n) converges to x . Then
 $Tx = x$, then by uniqueness part of Contraction Mapping Principle, $x = 0$.
Also, $\lim_{n \to \infty} x_n = \lim_{n \to \infty} Tx_0 = 0$ by the existence purt of Contraction Mapping Principle

(2) (HW8, Q5) Show that every continuous function
$$f:[0,1] \rightarrow [0,1]$$

has a fixed point.

Sol) If
$$f(0) = 0$$
 or $f(1) = 1$, then f has a fixed point.
Otherwise, assume $f(0) > 0$ and $f(1) < 4$.
Define $g: [0,1] \rightarrow IR$ by $g(x) = f(x) - x$
then $g(0) > 0$ and $g(1) < 0$.
As g is continuous, by Intermediate Value Theorem,
there exists $\xi \in (0,1)$ s.t. $g(\xi) = 0$, i.e. $f(\xi) = \xi$
Thurfore, f has a fixed point.

Q3) (HW8,Q6) (Inverse Function Theorem For IR)
Let $f: [a, b] \rightarrow \mathbb{R}$ be a C^1 function. Show that
f admits a global differentiable inverse $g \iff \forall x \in (\alpha, b), f'(x) \neq 0$
Sol) [\Rightarrow] Assuming such g exists, then $\forall x \in (a,b), g(f(x)) = x$;
differentiating both sides with respect to $x : g'(f(x)) \cdot f'(x) = 1$
$\therefore \forall x \in (a,b), f'(x) \neq 0$
[⇐] As $f': (a,b) \rightarrow \mathbb{R}$ is continuous, either $\forall x, f'(x) > 0$ or $\forall x, f'(x) < 0$
WLOG assume $\forall x, f'(x) > 0$; We first show that f is strictly increasing.
$\forall x, y \in [\alpha, b]$. $x < y$ by MVT, $\exists \xi \in (\alpha, b)$ $s - t$. $f(y) - f(x) = f(\xi)(y - x) > 0$
$(f: [a,b] \rightarrow [f(a), f(b)]$ is strictly increasing continuous, in particular is bijective.
Then there exists global inverse $g: [f(\omega), f(b)] \rightarrow [a, b]$ which is continuous
and strictly increasing by the Continuous Invene Theorem ([Burtle, Thm 5.6.5]).
Also, f is differentiable with $f'(x) \neq 0$, $\forall x \in (a,b)$. Therefore, by the
Differentiable Invene Theorem ([Burtle: Thm 6.1.8]), 9 is also differentiable.